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Abstract: The rapid expansion of human settlements and agriculture in the Dry Zone of Sri Lanka 
has led to extensive forest fragmentation, severely threatening the habitat of the endangered Asian 
elephant and intensifying Human-Elephant Conflict (HEC). This ongoing conflict has escalated 
beyond a biodiversity conservation issue to a major socio-economic challenge, undermining food 
security, poverty reduction, and sustainable agricultural development in rural communities, causing 
challenges in achieving sustainable development goals. The main aim of this study was to assess the 
Land Use and Land Cover (LULC) changes of dry zone forests in Thirappane, Anuradhapura 
District, Sri Lanka, from 1995, 2010 and 2024. Sentinel-2 satellite images were used, and a 
Convolutional Neural Network (CNN)-based AI model was used to improve classification accuracy 
and to estimate temporal changes. The fragmentation parameters, such as patch density, edge 
density, and core area, were estimated using QGIS. Then, drivers for the habitat fragmentation and 
socio-economic influence on rural communities were evaluated using a field survey and a household 
survey carried out for selected Grama Niladhari Divisions The CNN-enhanced model demonstrated 
improved classification performance with overall accuracies of 89.1%, 90.3%, and 91.6% and 
Kappa Coefficients of 85%, 87%, and 89% for 1995, 2010, and 2024 respectively. Significant land 
cover changes were revealed over the study period, and fragmentation parameters indicated a 
marked increase in forest fragmentation over the study period, with edge density rising from 1.53 
m/ha in 1995 to 1.84 m/ha in 2024, core area reducing from 14 ha to 6 ha, and patch density 
increasing from 0.029 to 0.054 patches/ha, reflecting reduced habitat quality and connectivity, 
resulting in more encroachment of elephants into cultivated areas. Major drivers for the forest 
fragmentation were agriculture and settlement expansion. As a result of the conflicts, the frequency 
of both elephant deaths and human deaths is escalating over time. There is a strong positive 
correlation (R = 0.76) between agricultural expansion and conflict frequency. Notably, 82% of 
respondents reported frequent crop damage, while 68% expressed dissatisfaction with existing 
mitigation strategies such as electric fencing. Loss of agriculture-based rural livelihoods, collapse 
of education of school children, and depression due to these conflicts are severe socio-economic 
problems encountered by rural communities. The findings highlight the urgent need for integrated 
land-use planning that aligns wildlife conservation with rural livelihood sustainability in conflict-
prone areas in South Asian regions.  

Keywords: Geospatial and Socio-economic Assessment, Forest Fragmentation, Human-Elephant 
Conflict, Land-Use Changes, Sustainable Development Goals, Dry Zone   
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Introduction 

ri Lanka’s commitment to achieving the Sustainable Development Goals (SDGs), including SDG 1 (No 
Poverty), SDG 2 (Zero Hunger), SDG 13 (Climate Action), and SDG 15 (Life on Land), underscores the urgent 
need to enhance rural livelihoods, ensure food security, and maintain ecological integrity within the Dry Zone. 

This region, which covers nearly 70% of Sri Lanka’s land area, plays a critical role in the nation’s agrarian economy 
while providing essential ecosystem services and biodiversity support for rural communities (United Nations, 2015; 
Food and Agriculture Organization FAO, 2020). Historically, agriculture in Sri Lanka’s Dry Zone was sustained 
through an indigenous tank-based irrigation system that efficiently managed seasonal rainfall to support rainfed paddy 
cultivation while preserving forest cover, soil fertility, and biodiversity (Panabokke, 2002; Madduma Bandara, 1985). 
Dating back to the 4th/3rd century BCE, these ancient systems enabled a harmonious coexistence between human 
livelihoods and ecological conservation across centuries (Abeywardana et al., 2019). However, the Mahaweli 
Development Project (MDP) launched in the 1970s, which diverted Mahaweli River water to Dry Zone districts 
including Anuradhapura, shifted rainfed agriculture toward irrigated agriculture while accelerating human settlements 
and infrastructure development in these regions (Kikuchi et al., 2003; Somaratne & Dissanayake, 2016). While this 
transition improved agricultural productivity and supported rural development, it also led to extensive land use 
changes, forest encroachment, and habitat fragmentation, contributing to environmental degradation (Dharmasena, 
2010; Herath, 2020). 

The Anuradhapura District, traditionally covered with extensive forest, has undergone substantial forest loss over the 
past three decades, largely owing to agricultural expansion, human settlement, and development—a trend well 
documented between 2010 and 2024 using GIS and remote sensing techniques (Bandara et al., 2025). The most rapid 
decline occurred between 2010 and 2024, reflecting intensified pressures on forest landscapes due to human activities, 
including irrigation-based agriculture, settlements, and road development. Over the past three to four decades, Sri 
Lanka has also experienced a rapid increase in human population, which has directly contributed to land use changes, 
forest fragmentation, and increased demand for agricultural expansion. Figure 1 illustrates the population and average 
growth rates in each year from 1871 to 2024 based on the data of the Department of Census and Statistics. According 
to national census data, Sri Lanka’s population grew from approximately 14.8 million in 1981 to 18.8 million in 2001, 
20.3 million in 2012, and is projected to reach around 22.2 million by 2024, representing an approximate 50% increase 
over 43 years (Department of Census and Statistics, Sri Lanka, 2022). Although the annual growth rate has gradually 
declined from 1.7% in 1981 to 0.5% by 2024, the increasing population has escalated demand for settlements and 
agriculture, driving encroachment into forested landscapes and contributing to habitat fragmentation. In 
Anuradhapura, the population density increased from 82 persons per square kilometer in 1981 to 128 persons per 
square kilometer by 2012 (Abeywardana et al., 2019). This demographic expansion has further increased human 
pressures on limited forest resources within the Dry Zone. The historical and recent population trends of elephants in 
Sri Lanka are summarized in Table 1. 

 

 

 

 

 
 
 
 
 
 
 

Figure 1:  Population and average growth rates from 1871 to 2024 
Source: Department of Census and Statistics, Sri Lanka (2024) 
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In parallel, the Asian elephant (Elephas maximus) population in Sri Lanka has also increased significantly over the 
last several decades, intensifying competition for space and resources between humans and elephants within the Dry 
Zone. The historical and recent population trends of elephants in Sri Lanka are summarized in Table 1. 

Table 1: Elephant population trend in Sri Lanka (1951 to 2011) 

Year/Period Population Estimate Source 
1951 ~1,500 Norris (1959) 
1969 1,600–2,200 McKay (1973) 
1978 2,000–5,000 Olivier (1978); Hoffmann (1978) 
1990 2,700–3,200 Santiapillai & Jackson (1990) 
1993 1,967 (dry season count, excluding north) Hendavitharana et al. (1994) 
2004 1,076 (Northwest and North) Department of Wildlife Conservation (DWC) 
2008 2,149 (North-central and East) DWC 
2011 5,879 (entire island) DWC 

The increase in elephant populations is attributed to legal protection, reduced poaching, and conservation initiatives 
(Fernando et al., 2021). However, this increase has not been matched by an expansion of suitable habitats, leading to 
increased contact between elephants and humans in agricultural landscapes. 

The simultaneous growth of human and elephant populations, combined with the decline and fragmentation of forest 
cover, has led to a significant escalation of HEC in Sri Lanka. Currently, it is estimated that approximately 70 human 
and 250 elephant deaths occur annually due to HEC, with the Dry Zone, including Anuradhapura, being among the 
most severely affected regions (Fernando et al., 2021; Wickramanayake et al., 2020). Elephants frequently raid crops 
such as paddy, banana, and maize, which are essential for the livelihoods of rural communities, resulting in substantial 
economic losses, food insecurity, and psychological stress among farming households (Hoffmeier-Karimi & Schulte, 
2015; Perera, 2009). 

Forest fragmentation, characterized by the breaking up of contiguous forest landscapes into smaller, isolated patches, 
has been identified as a primary driver of HEC in Sri Lanka. Fragmentation reduces habitat quality and connectivity, 
increases edge effects, and disrupts traditional elephant migratory routes, forcing elephants to traverse agricultural 
lands and human settlements in search of food and water (Cushman et al., 2010; Laurance et al., 2018; Gunawardana 
et al., 2023). These changes not only increase the frequency and severity of HEC but also exacerbate socio-economic 
vulnerabilities in rural communities within the Dry Zone, further threatening the resilience and sustainability of local 
livelihoods (Wickramanayake et al., 2020). 

Despite the critical role of forest fragmentation in driving HEC, systematic and quantitative analysis of fragmentation 
patterns using advanced geospatial and analytical methods remains limited within Sri Lanka’s Dry Zone, representing 
a significant research gap (Herold et al., 2003; Liu et al., 2020). While geospatial technologies such as remote sensing 
and Geographic Information Systems (GIS) have been employed to monitor LULC changes, the integration of 
Artificial Intelligence (AI), particularly Convolutional Neural Networks (CNNs), to enhance LULC classification and 
temporal change detection in fragmented and heterogeneous landscapes remains underutilized in Sri Lanka (Zhang et 
al., 2019; Liu et al., 2020). This methodological limitation hinders the generation of accurate and granular datasets 
necessary for evidence-based conservation planning, land management, and the design of effective HEC mitigation 
strategies. 

Furthermore, there is a critical need to understand the socio-economic impacts of HEC on rural farming communities, 
including crop and property damage, livelihood disruptions, psychological impacts, and community-level coping 
strategies, to design effective and locally appropriate mitigation measures (Bandara & Tisdell, 2003; Sitati et al., 
2003). Incorporating local community perspectives into conservation planning is essential for building resilience while 
promoting coexistence and ecological sustainability in Sri Lanka’s Dry Zone. Within this context, the DSD in the 
Anuradhapura District was selected as the study area due to its location in the dry zone’s forest-agriculture interface, 
where forest fragmentation is intensifying alongside agricultural expansion. Thirappane has been identified as an HEC 
hotspot, with frequent crop raids and property damage reported along fragmented forest edges, water sources, and 
paddy field boundaries, highlighting it as a critical landscape to investigate the intersection of habitat fragmentation 
and human-elephant interactions. This area also represents typical dry zone socio-ecological conditions, making it an 
ideal case for examining spatial patterns of fragmentation and conflict dynamics while providing insights applicable 
to broader dry zone management. 
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Against this backdrop, the general objective of this study is to assess the LULC changes of dry zone forests in 
Thirappane, Anuradhapura District, Sri Lanka for the years 1995, 2010, and 2024. Specifically, the research aims to 
detect and analyze LULC changes and quantify forest fragmentation using remote sensing, geospatial techniques, and 
AI, particularly CNNs, to enhance classification accuracy and evaluate habitat quality and connectivity. The study 
further seeks to assess the relationship between forest fragmentation and HEC by examining how land use 
transformations influence elephant movement patterns and the frequency of conflict incidents. Finally, it investigates 
the socio-economic impacts of HEC on rural farming communities, with a focus on crop damage, livelihood 
disruption, food insecurity, and the effectiveness of existing mitigation strategies such as electric fencing. This 
research contributes to addressing critical gaps in knowledge and methodology, providing insights essential for 
sustainable land management, biodiversity conservation, and conflict-sensitive agricultural development in support of 
Sri Lanka’s commitments to the Sustainable Development Goals. 

Literature Review 

Global Perspectives on Land Use and Land Cover (LULC) Change 

Land Use and Land Cover (LULC) change has emerged as a significant global concern due to its far-reaching impacts 
on ecosystems, climate regulation, and biodiversity conservation (Foley et al., 2005; Turner et al., 2007). 
Anthropogenic drivers such as urban sprawl, agricultural expansion, deforestation, and infrastructure development are 
transforming natural landscapes at unprecedented rates, leading to habitat degradation and disruption of ecological 
processes (Lambin & Geist, 2006; Ellis et al., 2010; Seto et al., 2012). According to the Food and Agriculture 
Organization (FAO, 2020), approximately 4.7 million hectares of forests were lost annually between 2015 and 2020, 
primarily due to agricultural expansion and urban growth. Hansen et al. (2013) reported a global forest cover loss of 
over 2.3 million km² between 2000 and 2012, with the highest rates occurring in tropical regions, which are critical 
for carbon storage and biodiversity (Gibbs et al., 2010; Barlow et al., 2016). 

These transformations are particularly significant in tropical areas, where deforestation accelerates climate change and 
reduces biodiversity by fragmenting habitats and disrupting ecological connectivity (Laurance et al., 2014; Newbold 
et al., 2015). Monitoring and analyzing LULC changes provide essential insights into spatial and temporal dynamics, 
informing sustainable land management and conservation planning (Song et al., 2018; Cai et al., 2019). Advances in 
remote sensing and geospatial analysis have enabled accurate, near-real-time assessments of land cover changes, 
supporting global and regional conservation efforts (Wulder et al., 2018; Li et al., 2020; Gong et al., 2020). 
Understanding global LULC dynamics provides essential context for addressing local conservation challenges in 
biodiversity hotspots, including Sri Lanka’s ecologically sensitive Dry Zone (Gunawardana et al., 2023; 
Wickramanayake et al., 2020). 

Regional Trends in Land Use and Land Cover Change in South and Southeast Asia 

South and Southeast Asia are experiencing some of the most rapid LULC changes globally due to agricultural 
intensification, urban expansion, and large-scale infrastructure projects (Meyfroidt et al., 2013; Curtis et al., 2018). 
Countries including India, Indonesia, Myanmar, and Thailand have witnessed extensive deforestation and land 
conversion for agriculture, mining, and urban growth (Achard et al., 2002; DeFries et al., 2010). Infrastructure 
projects, such as roads, irrigation schemes, and hydropower developments, have further fragmented forest landscapes, 
resulting in biodiversity loss and increased human-wildlife conflicts (Wilcove et al., 2013; Zhou et al., 2014). 

Sri Lanka shares similar regional characteristics, with the Dry Zone undergoing extensive land use change due to 
state-led agricultural development and resettlement initiatives (Madduma Bandara, 1985; Panabokke, 2002). The 
Mahaweli Development Program, one of the country’s largest irrigation and resettlement projects, has transformed 
landscapes in districts like Anuradhapura, resulting in forest clearance and altered hydrology (Kikuchi et al., 2003; 
Dharmasena, 2010). Examining these regional LULC patterns provides a comparative lens to understand the 
ecological and socio-economic implications of such changes, supporting the formulation of transboundary 
conservation frameworks and resilient land management practices (Sloan & Sayer, 2015; Gaveau et al., 2014). 

Forest Fragmentation and Its Ecological Consequences 

Forest fragmentation, a key outcome of LULC change, involves the subdivision of large, continuous forest areas into 
smaller, isolated patches, causing significant ecological disruptions (Fahrig, 2003; Haddad et al., 2015). Fragmentation 
introduces edge effects, alters microclimates, and reduces habitat availability for interior-dependent species, 
negatively impacting biodiversity and ecosystem functions (Murcia, 1995; Laurance et al., 2002; Fischer & 
Lindenmayer, 2007). Reduced connectivity across landscapes poses particular challenges for wide-ranging species 
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such as the Asian elephant (Elephas maximus), while increasing vulnerability to invasive species, fire, and illegal 
resource extraction (Cushman et al., 2010; Pfeifer et al., 2017). 

In Sri Lanka, fragmentation is a growing conservation challenge, especially in the Dry Zone where agricultural 
expansion and settlement drive habitat loss (Wickramanayake et al., 2020; Fernando et al., 2005). Elephants require 
large, connected landscapes for seasonal migration and foraging, and fragmentation forces them into agricultural areas, 
escalating human-elephant conflict (Fernando et al., 2012; Leimgruber et al., 2003). The erosion of forest connectivity 
threatens conservation investments, emphasizing the need for integrated landscape management approaches and 
corridor restoration to enhance biodiversity conservation and reduce human-wildlife conflict (Laurance & 
Bierregaard, 1997; Corlett, 2016). 

Land Use Change in Sri Lanka’s Dry Zone 

Sri Lanka’s Dry Zone has undergone substantial land use transitions over the past several decades, largely driven by 
development programs and resettlement policies (Madduma Bandara, 1985; Panabokke, 2002). The Mahaweli 
Development Scheme converted extensive forest areas into irrigated agricultural lands, resulting in widespread 
deforestation and degradation of dry monsoon forests (Kikuchi et al., 2003; Dharmasena, 2010). These transformations 
have fragmented critical habitats and increased pressures on remaining ecosystems (Gunawardana et al., 2023). 

Remote sensing studies have confirmed ongoing land cover changes in Anuradhapura District, indicating a decline in 
forest cover and increases in mixed-crop cultivation and built-up areas (Herath et al., 2022). The expansion of 
agriculture into forested areas leads to irreversible ecological damage, disrupts wildlife corridors, and intensifies 
human-wildlife conflicts (Wickramanayake et al., 2020; Fernando et al., 2005). Understanding these land use 
trajectories is essential for anticipating future conflicts and implementing adaptive, sustainable land management in 
the Dry Zone. 

Human-Elephant Conflict: Causes, Consequences, and Management 

HEC has emerged as a critical socio-ecological issue in Sri Lanka, particularly in regions undergoing rapid land use 
transitions (Fernando et al., 2012; de Silva & Ranjeewa, 2011). As habitats shrink and fragment, elephants are forced 
into agricultural landscapes to access food and water, leading to crop damage, property destruction, and fatalities for 
both humans and elephants (Fernando et al., 2005; Hoare, 2015). The conversion of forests to farmland and settlements 
underpins HEC escalation, as elephants lose access to traditional migration routes and habitats (Leimgruber et al., 
2003; Chiyo et al., 2005). 

Although mitigation strategies such as electric fencing, elephant drives, and translocation have been implemented, 
these often lack scientific planning and local community involvement, limiting their long-term effectiveness 
(Fernando et al., 2011; Osborn & Parker, 2003). The socio-economic impacts of HEC on rural households are severe, 
resulting in income loss, food insecurity, psychological distress, and educational disruptions for children (Bandara & 
Tisdell, 2003; Sitati et al., 2003). Addressing HEC requires integrated, landscape-level planning, community-led 
initiatives, and evidence-based management strategies that promote coexistence between humans and elephants 
(Graham et al., 2010; Fernando et al., 2012). 

Role of AI and CNN-Based Models in LULC Change Detection 

AI, particularly CNNs, has transformed LULC mapping and change detection, enabling improved classification 
accuracy in complex, heterogeneous landscapes (Zhu et al., 2017; Ma et al., 2019). CNNs extract hierarchical spatial 
and contextual features, surpassing traditional pixel-based approaches in identifying nuanced differences in land cover 
(Zhang et al., 2019; Li et al., 2020). Utilizing satellite datasets such as Sentinel-2 and Landsat, CNNs facilitate high-
resolution monitoring of temporal and spatial land cover changes essential for landscape analysis and planning (Fu et 
al., 2017; Zhong et al., 2019). 

In Sri Lanka’s Dry Zone, where land cover patterns are complex and fragmented, CNNs enhance the detection of 
forest patches and agricultural encroachment, supporting the quantification of landscape metrics including patch 
density, edge density, and core area (Gunawardana et al., 2023). These AI models are adaptable using transfer learning 
and require relatively limited training data, making them practical for conservation and land use applications in 
resource-constrained contexts (Zhu et al., 2017; Gong et al., 2020). 

Integrating LULC Detection with Socio-Economic Assessments 

Assessing LULC changes without socio-economic context offers an incomplete understanding of conservation and 
development challenges (Ostrom, 2009; Turner et al., 2007). Integrating geospatial LULC analysis with socio-
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economic assessments provides insights into how landscape changes impact livelihoods, resource access, and 
community resilience (Ellis, 2013; Mertz et al., 2010). In Sri Lanka’s rural communities, forest fragmentation 
exacerbates vulnerabilities in agriculture-dependent households, increasing exposure to crop damage and resource 
scarcity (Bandara & Tisdell, 2003; Fernando et al., 2005). 

Combining satellite-based LULC data with household surveys, participatory mapping, and spatial analysis enables the 
identification of hotspots of ecological degradation and social vulnerability (Reid et al., 2009; Munroe et al., 2014). 
This integrated approach is critical for designing policies that are ecologically effective and socially equitable, 
supporting biodiversity conservation while aligning with the Sustainable Development Goals (UN, 2015; Sayer et al., 
2013). Such holistic frameworks prioritize interventions addressing environmental degradation while enhancing 
community resilience, supporting sustainable conservation in Sri Lanka’s Dry Zone. 

Methodology  

Study Area 

This study was conducted in the Thirappane DSD, located in the southern region of the Anuradhapura District in Sri 
Lanka's North Central Province. Figure 2 illustrates the map of the study area. The selection of Thirappane DSD was 
grounded in secondary data analysis using incident records obtained from the Department of Wildlife Conservation 
(DWC), Sri Lanka. According to compiled incident data between 2015 and 2021, Thirappane reported 14 human 
deaths due to HEC, the highest among all DSDs in the district, while 19 elephant deaths were also recorded during 
the same period, again the highest in Anuradhapura District (Department of Wildlife Conservation, 2022). This dual 
prevalence of HEC incidents positions Thirappane as the most conflict-prone DSD in the district, justifying its 
selection as the focal point for this research. 

To further narrow the investigation, three GNDs were selected based on the density of HEC reports, spatial proximity 
to forest fragments, and alignment with known elephant movement corridors. These included Sembukulama, 
Ethungama North, and Manakkulama, identified through incident mapping from DWC records, initial community 
consultations, and reconnaissance surveys conducted in the study area (Fernando et al., 2021). 

Thirappane lies within Sri Lanka’s Dry Zone, characterized by an average annual temperature range of 25°C to 30°C 
and annual rainfall between 1,000 millimeters and 1,500 millimeters, primarily received during the North-East 
monsoon (Panabokke, 2002; Department of Meteorology, Sri Lanka, 2023). The region supports predominantly 
agriculture-based livelihoods, with paddy cultivation being the primary economic activity. The expansion of irrigated 
agriculture and settlements under initiatives such as the Mahaweli Development Project (MDP) has contributed to 
land use changes and forest fragmentation, intensifying HEC as elephants encounter human-dominated landscapes in 
search of food and water (Kikuchi et al., 2003; Dharmasena, 2010). 

Thirappane’s position as an interface zone between forest habitats and agricultural lands makes it especially vulnerable 
to forest fragmentation, biodiversity loss, and direct wildlife-human interactions, leading to heightened HEC 
incidences (Wickramanayake et al., 2020). The selection of this site allows for a comprehensive analysis of spatial 
patterns of land cover change, ecological degradation, and its socio-economic consequences, providing critical insights 
for sustainable land use planning, HEC mitigation, and biodiversity conservation in Sri Lanka’s Dry Zone. 
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Figure 2: Study Area Map 

 

Data Collection 

This study utilized a mixed-methods approach, integrating spatial data and non-spatial quantitative and qualitative 
data collection strategies to assess the impact of LULC changes and forest fragmentation on HEC and rural livelihoods 
in the Anuradhapura District, with a focus on the Thirappane DSD using spatial data acquired from satellite images. 
The approach included both primary data collection from villages in Thirappane DSD and the integration of secondary 
data from institutional sources to ensure robust analysis. 

 Geospatial Approach  

Spatial data were gathered from multi-temporal satellite imagery (1995, 2010, and 2024), sourced from Landsat and 
Sentinel platforms, and processed for LULC classification. These datasets were selected not only for their temporal 
coverage and spatial resolution but also for their compatibility with advanced classification techniques. In particular, 
a pre-trained Convolutional Neural Network (CNN) model was later applied during the data processing phase to 
enhance the classification accuracy of LULC outputs. Supplementary land use maps from the Survey Department and 
GPS data from field surveys were used to validate imagery. Table 2 summarizes the spatial data type, sources and 
purposes of the spatial data for the spatial analysis.  
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Table 2: Spatial data types, sources, and their purposes 

Spatial Data Type Source Purpose 
Satellite Imagery Landsat 4-5TM (1995), Landsat 8 OLI (2010), 

Sentinel-2A MSI (2024) 
LULC classification and detection of 

forest fragmentation 
GPS Mapping Data Field-based GPS tracking Validate land use classes and map 

elephant paths 
Land Use Maps Survey Department of Sri Lanka Support accuracy enhancement in 

LULC classification 
Elephant Corridor 

Data 
Department of Wildlife Conservation Identify Elephant movements 

Remote Sensing 
Earth Data 

BigEarthNet v1.0 For remote sensing image 
understanding 

 

The non-spatial data collection involved both primary and secondary data sources. Sixty households (20 from each 
GND) were selected through convenience sampling, a method chosen for its feasibility in rural and sometimes 
inaccessible settings. Structured household surveys were used to collect data on land use practices, crop types, 
frequency and severity of elephant encounters, damage valuation, and adaptive behaviors. 

The Socio-Ecological Costs of Habitat Fragmentation and Human-Elephant Conflict 

To gain deeper insights into the drivers and consequences of LULC change and habitat fragmentation, a field survey 
and household-level qualitative data collection were conducted in the study area. Semi-structured interviews were 
held with key officials from the Forest Department, Department of Wildlife Conservation, and local Grama Niladhari 
(GN) officers. These interviews explored institutional challenges, perceptions of land management, observed elephant 
movement trends, and the effectiveness of mitigation strategies such as electric fencing, elephant deterrents, and 
compensation processes for crop and property damages. 

In addition, Focus Group Discussions (FGDs) were conducted in each GND with groups of farmers, elders, and youth 
to capture community-level experiences of HEC, LULC transitions, and adaptation practices. Discussions were 
structured around themes including crop and property damages due to elephant raids, income instability, displacement 
risks, disruptions to children's education, and psychological stress experienced by farming households. Special 
emphasis was placed on understanding the economic burden borne by households due to crop losses, including paddy, 
banana, and maize, and the coping mechanisms employed by communities in response to repeated damages. 

Field observations were made across all three GNDs (Sembukulama, Ethungama North, and Manakkulama) and 
surrounding buffer zones, including visits to croplands, forest edges, and water sources frequently visited by elephants. 
These observations were used to ground-truth classified satellite imagery, validate community reports on elephant 
raids and conflict hotspots, and study spatial patterns of habitat degradation and elephant pathways within the 
fragmented landscape. Table 3 summarizes the qualitative data collection components and explicitly includes the 
assessment of damages experienced by farmers. 

 

Table 3: Qualitative Data sources and their purposes 

Qualitative Data 
Type 

Source Purpose 

Semi-Structured 
Interviews 

Forest and Wildlife 
Officials, GN Officers 

Explore institutional understanding, policy constraints, and 
management of HEC and compensation processes for farmer 
damages 

Focus Group 
Discussions (FGDs) 

Farmers, women, and 
youth in three GNDs 

Document community perceptions of LULC changes, crop 
and property damages due to HEC, livelihood impacts, and 
coping mechanisms 

Field Observations Cropland, forest edges, 
elephant trails, Water 
sources 

Verify LULC classifications, spatially map conflict zones, 
and observe evidence of elephant incursions and crop 
damage 
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This comprehensive qualitative assessment ensured that the socio-economic impacts of habitat fragmentation and 
HEC on rural farming communities were systematically captured alongside ecological observations, providing a 
holistic understanding necessary for informed conservation planning and the development of conflict-sensitive land 
management strategies in Sri Lanka’s Dry Zone. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure    3: Methodological flow diagram for the geo-spatial assessment 

 

Figure 3 illustrates the overall methodology for the spatial assessment. Following step-by-step methodology was 
implemented to assess the land use changes (Herath et. al, 2021) 
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Data Processing 

Image Preprocessing 

The satellite images from Landsat 5 TM (1995), Landsat 8 OLI (2010), and Sentinel-2A MSI (2024) were 
preprocessed to ensure compatibility and comparability across time periods. The preprocessing involved two key 
stages: radiometric correction and geometric correction. 

Radiometric correction was performed to convert raw Digital Numbers (DNs) into Top of Atmosphere (TOA) 
reflectance. The general formula applied for Landsat datasets is: 

L = G \times DN + B  

Where: 

L = Radiance 

G = Gain (sensor-specific) 

DN = Digital Number from raw satellite image 

B = Bias or offset 

Geometric correction involved orthorectifying the images using Ground Control Points (GCPs) and the Shuttle Radar 
Topography Mission (SRTM) Digital Elevation Model. This corrected spatial distortions due to terrain and sensor 
angles. All images were then resampled to a common resolution (30m for Landsat and 10m for Sentinel-2) and re - 
re-projected to WGS 84 / UTM Zone 44N. 

X' = aX + bY + c  

Y' = dX + eY + f 

Where: 

X', Y' = Corrected pixel coordinates 

      X, Y = Original coordinates 

      a, b, c, d, e, f = Transformation coefficients (from polynomial models) 

Land Use and Land Cover (LULC) Classification 

Post-preprocessing, images were subjected to a hybrid classification process. Initially, supervised classification using 
the Random Forest (RF) algorithm was carried out in QGIS. Five classes were defined: Forest, Agriculture, Water, 
Built-up, and Barren Land. Training data for classification were derived from field-verified ground control points and 
reference satellite maps. 

Pre–trained AI Model integration for increasing the accuracy of the classified LULC data.  

To enhance LULC classification accuracy and reduce spectral confusion, a hybrid approach integrating a pre-trained 
CNN model based on the ResNet-50 architecture was employed. Initially, satellite images from 1995 (Landsat 5), 
2010 (Landsat 8), and 2024 (Sentinel-2A) were subjected to geometric and radiometric corrections and clipped to the 
Thirappane GNDs. A baseline classification was conducted using the Random Forest (RF) algorithm in QGIS, 
defining five LULC classes: Forest, Agriculture, Water, Built-up, and Scrubs, with training data collected through 
field-verified ground control points and reference satellite maps. For CNN enhancement, 32×32-pixel tiles were 
extracted from the classified rasters, incorporating spectral bands and spatial context.  

A total of 7,500 image tiles were prepared for training—comprising 2,000 forest, 2,000 agriculture, 1,500 
barren/scrub, 1,000 water, and 1,000 built-up samples. The ResNet-50 model, pre-trained on the BigEarthNet dataset, 
was fine-tuned using this localized dataset with an 80/20 training-validation split. Final predictions were performed 
tile-wise and merged to generate enhanced LULC maps. Accuracy assessments using 100 validation points per time 
period showed substantial improvements in both Overall Accuracy and Kappa Coefficient compared to RF-only 
results, confirming the CNN’s effectiveness in complex tropical landscapes. 
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Classification Accuracy Assessment 

The accuracy of classified outputs was assessed through the generation of confusion matrices using 100 validation 
points per time period. Metrics such as Overall Accuracy (OA) and Kappa Coefficient were calculated using the 
formulas mentioned in Table 4.  

Table 4: Accuracy assessment equations table 

Metric Formula Explanation 
Overall 
Accuracy (OA) 

OA = (Σ x_ii) / N x_ii = number of correctly classified samples for class i (diagonal 
of confusion matrix) N = total number of samples 

Kappa 
Coefficient (K) 

K = [N × (Σ x_ii) – Σ (x_i+ 
× x_+i)] / [N² – Σ (x_i+ × 
x_+i)] 

x_ii = correctly classified samples (diagonal) x_i+ = row total for 
class i (actual total) x_+i = column total for class i (predicted total) 
N = total number of samples 

 

Estimation of Fragmentation parameters of the fragmentation Metrics   

To evaluate forest fragmentation, binary forest/non-forest raster layers were generated from classified LULC maps 
for 1995, 2010, and 2024. The Landscape Ecology Statistics (LecoS) plugin in QGIS was used to calculate key 
fragmentation metrics: Number of Patches (NP), Patch Density (PD), Edge Density (ED), and Core Area (CA). These 
metrics were then spatially compared with Global Positioning System (GPS)-mapped elephant trails to assess habitat 
degradation and connectivity loss. Table 5 illustrates the description of the parameters of fragmentation metrics.  

 

Table 5: Fragmentation metrics equations 

Metric Description Formula Parameters 
Number of 
Patches (NP) 

Total count of discrete forest patches within the 
landscape, indicating landscape fragmentation. 

– N = number of forest 
patches identified from 
binary forest raster layers. 

Patch 
Density 
(PD) 

Indicates the number of forest patches per unit 
area, reflecting fragmentation severity. 

PD = (N / A) × 
10,000 

N = number of forest 
patches A = total landscape 
area (ha) 

Edge 
Density 
(ED) 

Quantifies the length of forest edge per unit 
area, indicating the degree of exposure to edge 
effects and human disturbances. 

ED = (E / A) × 
10,000 

E = total length of forest 
edge (m)A = total 
landscape area (m²) 

Core Area 
(CA) 

Represents interior forest zones beyond human-
disturbed edges, calculated by excluding a 100 
m buffer from the forest edge. 

CA = Af – Ae Af = total forest area Ae = 
edge buffer area (100 m 
width) 

The Number of Patches (NP) was recorded directly from the LecoS output, providing a baseline for the fragmentation 
status of the landscape in each year, with higher NP values indicating an increase in fragmentation over time. Patch 
Density (PD) was used to normalize NP against landscape area, enabling comparison across temporal datasets. Edge 
Density (ED) quantified the total edge length relative to the landscape area, providing insight into the degree of 
exposure of forest patches to external influences, while Core Area (CA) calculations isolated the interior undisturbed 
forest zones that are critical for wildlife habitat, particularly for the Asian elephant. 

These fragmentation metrics collectively provided a quantitative assessment of forest fragmentation trends in the 
Thirappane Divisional Secretariat Division, informing the evaluation of landscape degradation, its ecological impacts 
on elephant habitat connectivity, and its relevance for HEC mitigation and sustainable land use planning in Sri Lanka’s 
Dry Zone. 

Results and Discussion  

This section presents the results derived from the multi-temporal LULC analysis, forest fragmentation assessment, 
and socio-ecological surveys conducted in the Thirappane DSD. The discussion is organized around the three core 
research objectives: to assess spatio-temporal LULC changes in Thirappane over the period 1995–2024, to evaluate 
forest fragmentation patterns and their relation to HEC, and to examine the socio-economic impacts of LULC 
dynamics and conflict on rural livelihoods. 
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Improvement of LULC Classification Accuracy Through CNN Integration 

The integration of a pre-trained CNN model significantly improved the accuracy of LULC classifications compared 
to using a traditional (RF) classifier alone. This enhancement was particularly notable in areas where class boundaries 
(e.g., between forest and agricultural zones) were spectrally complex or spatially fragmented. The CNN model, fine-
tuned on local imagery tiles derived from Sentinel and Landsat datasets, captured spatial features beyond spectral 
signatures, enabling a more refined classification output. Table 6 summarizes the overall classification accuracy and 
Kappa Coefficient across the three temporal stages (1995, 2010, 2024), comparing the performance of RF-only 
classification with CNN-enhanced outputs: 

Table 6: Classification Accuracy table 
 

Method 1995 
Accuracy 

(%) 

1995 
Kappa 

(%) 

2010 
Accuracy 

(%) 

2010 
Kappa 

(%) 

2024 
Accuracy 

(%) 

2024 
Kappa 

(%) 
RF Only 82.3 76 84.5 78 85.7 80 
RF + CNN Enhancement 
(Accuracy Improvement) 

89.1 85 90.3 87 91.6 89 

These results clearly demonstrate the strength of integrating deep learning techniques in remote sensing-based land 
classification, aligning with trends identified in other tropical and heterogeneous landscapes by previous studies (e.g., 
Ghorbanian et al., 2021; Nogueira et al., 2017). The improvements validate the methodological shift towards hybrid 
classification workflows that blend traditional machine learning with advanced AI architectures for more reliable 
environmental monitoring. 

Spatio-Temporal Changes of LULC from 1995 to 2024 

A comparison map was generated to illustrate the differences in classification results before and after applying the 
CNN-enhanced model across the Anuradhapura District. This visual representation highlights the significant 
improvement in the spatial clarity and thematic accuracy of classified land cover types, enabling a more reliable 
interpretation of landscape dynamics (Figure 4). 

 

 

 

 

 

 

 

Figure 4: Comparison of LULC Classification Results for Anuradhapura District: 
 Before and After CNN Enhancement (1995, 2010, 2024) 
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Focusing on the Thirappane DSD, a subset of the classified imagery was extracted to conduct a detailed spatio-
temporal analysis of LULC changes within three selected Grama Niladhari Divisions (GNDs): Sembukulama, 
Ethungama North, and Manakkulama. Figure 5 illustrates the distribution of LULC maps derived from the LULC 
classification. The classification results revealed pronounced transformations over the study period—1995, 2010, and 
2024. The quantitative figures of the temporal distribution of LULC in 1995, 2010 and 2024 in Thirappane DSD are 
summarized in Table 7. The temporal changes of land cover types are illustrated in Figure 6. Notably, there was a 
substantial increase in agricultural land, particularly between 1995 and 2010, as cultivation expanded into previously 
forested regions. Over the entire study period, forest cover declined by approximately 17.8%, while agricultural areas 
increased by 24.3%. Built-up areas, though occupying a smaller total area, exhibited a dramatic increase of nearly 
60%, reflecting both population growth and expanding infrastructure. These patterns demonstrate the intensifying 
anthropogenic pressure on natural landscapes in the Dry Zone, underscoring the need for sustainable land-use practices 
and integrated conservation planning in rapidly transforming rural areas.  

                                       

Figure 5. LULC Map of Thirappane DSD in 1995, 2020 and 2024 
 

 
Table 7. Distribution of  land cover types in 1995, 2010 and 2024 in Thirappane DSD  
 

Land Cover Type 1995 (km²) 2010 (km²) 2024 (km²) 
Forest 172.821 152.492 136.307 

Water Bodies 10.704 12.305 16.644 
Agricultural Land 43.606 66.121 67.097 

Scrublands 76.747 68.531 67.580 
Built-Up Area 4.920 10.403 21.248 
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Figure 6: Temporal Land cover changes (1995 - 2024) 

These Spatio-temporal patterns in indicate not only the intensification of agriculture but also the progressive 
fragmentation of forest habitats, which is directly linked to increased human-elephant conflict in the region. The 
observed LULC dynamics provide critical empirical support for the study’s hypothesis that unregulated land 
transformation is a key driver of ecological degradation and socio-environmental conflict in Thirappane. 

Forest Fragmentation  

The calculated forest fragmentation metrics—PD, ED, and CA—demonstrate a clear and progressive increase in 
ecological disturbance across the study periods of 1995, 2010, and 2024. Table 8 illustrates the temporal data of 
estimated fragmentation parameters. Over time, the number and dispersion of forest patches increased, indicating 
intensifying fragmentation. Meanwhile, the Core Area, which represents undisturbed interior forest, continued to 
shrink, suggesting growing edge influence and habitat perforation, particularly in agriculturally expanding regions. 

In addition to the overall metrics, the spatial distribution of fragmentation categories—namely patch, edge, core, and 
perforated forest types—was analyzed using temporal maps. Figure 7 illustrates the spatial distribution of forest 
fragmentation in Thirappane in 1995, 2010 and 2024. Results revealed a distinct shift from core-dominated forest in 
1995 to a more fragmented landscape by 2024, where edge and perforated forest types were more prevalent. This shift 
reflects the increasing exposure of forest interiors to human activities and edge effects. 

 
Table 8. Distribution of fragmentation classes (in hectares) over time 

 
Fragmentation Type 1995 (ha) 2010 (ha) 2024 (ha) 

Core  14.81 10.7 6.29 
Edge  4.19 4.1 3.87 

Perforated  1.5 1.04 7.23 
Patch  4.67 5.47 15.69 

Forest Water Agriculture Scrub lands Built-Up
1995 (km²) 172.82 10.7 43.61 76.75 4.92
2010 (km²) 152.49 12.31 66.12 68.53 10.4
2024 (km²) 136.31 16.64 67.1 67.58 21.25
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Figure 7: Spatial distribution of forest fragmentation in the Thirappane region 

 

 

Forest habitat fragmentation and HEC 

The fragmentation distribution map for 2024 (Figure 9) highlights the dominance of edge and perforated forest classes, 
which are more susceptible to human-elephant interactions due to their proximity to cultivated and cleared lands. To 
delineate these potential conflict zones, a 2 km buffer was applied around observed forest edges and elephant-use 
zones. This buffer selection is justified by existing literature, which suggests that Asian elephants frequently move 
into and forage within 1–3 km of forest edges, especially in fragmented dry zone environments (Fernando et al., 2005; 
Leimgruber et al., 2003; Graham et al., 2009). 

In conjunction with this spatial analysis, field observations and interviews with wildlife officers and local villagers 
were conducted to identify elephant movement patterns. While secondary data obtained from the Department of 
Wildlife Conservation (DWC) only outlined suggested elephant corridors (Figure 8), the field-based insights provided 
more functional corridor zones, though not as clearly defined linear or point features. According to wildlife experts 
and local villagers with long-term observational experience, elephants follow recurring movement paths through 
fragmented forests and open lands in search of food and water. 

Next page 
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Figure 8: Identified Elephant Corridor Locations by DWC, Sri Lanka 

In several of these identified corridors, electric fences have been installed as a mitigation measure. However, 
inconsistencies in fencing—such as broken sections, presence of only basic wire fences, or absence of fencing 
entirely—were observed, leaving many areas vulnerable to elephant intrusion. These conditions, coupled with 
intensifying fragmentation patterns, underscore the urgent need for integrated land-use and conflict mitigation 
strategies tailored to local ecological realities. 

Next page 
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                           Figure 9: Spatial Integration of Forest Fragmentation, Elephant Corridors, and Conflict 

 Locations in Thirappane DSD in  2024 

And also, Statistical analysis further revealed a strong positive correlation (R = 0.76) between the extent of agricultural 
land expansion and the recorded frequency of human–elephant conflict (HEC) events within the study area. This 
pattern indicates that increasing fragmentation of natural habitats disrupts traditional elephant migratory routes and 
reduces habitat connectivity, thereby forcing elephants into closer and more frequent contact with human settlements 
in search of food and water. Figure 9 illustrates the integration of forest fragmentation, elephant corridors and conflict 
locations in Thirappane DSD in 2024.  
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Figure 10: Observed correlation between agricultural expansion and conflict events. 

Figure 10 illustrates the observed correlation between agricultural expansion and conflict events. This scatter plot 
indicates a strong positive correlation (R = 0.76) between observed agricultural expansion (2010–2024) and the 
frequency of HEC events (2015–2023) within the study area. The red regression line with the grey confidence band 
emphasizes this trend, supporting the hypothesis that increased agricultural activity and resulting habitat fragmentation 
are closely associated with elevated HEC incidents. 

Table 9: Fragmentation metrics of Thirappane DSD from 1995 to 2024 

Year Edge Density (m/ha) Core Area (ha) Patch Density (patches/ha) Number of Patches 
1995 1.53 14 0.029 9 
2010 1.75 6 0.045 12 
2024 1.84 6 0.054 13 

 

Table 9 summarizes key parameters of fragmentation metrics across the study area. These findings strongly support 
the hypothesis that forest fragmentation exacerbates human–elephant conflict within the Thirappane DSD. The 
reduction in core forest habitat from 14 ha in 1995 to 6 ha in 2024, coupled with an increase in edge density (from 
1.53 m/ha to 1.84 m/ha) and patch density (from 0.029 to 0.054 patches/ha), reflects increasing landscape 
fragmentation. These changes contribute to elephant behavioral shifts, including heightened crop raiding and 
aggressive encounters with rural communities—trends that carry serious implications for biodiversity conservation 
and the livelihood security of rural populations in the study area. 

Socio-Economic Consequences of LULC Change and HEC 

The household surveys and qualitative interviews provided critical insights into the socio-economic ramifications of 
HEC and environmental change. Approximately 82% of respondents reported recurrent crop damage, primarily to 
banana, paddy, and maize crops. Nearly 68% expressed dissatisfaction with existing mitigation strategies, especially 
the malfunctioning electric fences, citing poor maintenance and insufficient coverage. Furthermore, about 45% of 
surveyed households reported at least one member having experienced direct loss of income due to land degradation 
or wildlife-related damage. 
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Figure 11 illustrates the perceived effectiveness of electric fences during the Maha season, based on responses from 
60 households across selected GNDs. The majority of respondents rated the fences as only slightly effective (Rating 
2), while a smaller proportion considered them moderately to not effective (Ratings 1 and 3). Ratings indicating higher 
effectiveness (4 and 5) were the least represented. This distribution suggests that most households experience 
continued human-elephant conflict despite the presence of electric fences, highlighting potential issues such as poor 
maintenance, inadequate coverage, or elephants adapting to the fences. Overall, the data indicates a need for improved 
fence management and complementary mitigation strategies. 

 

  

 

 

 

 

 

 

Figure 12 shows the annual trend of HEC-related deaths, combining both human and elephant fatalities, from 2016 to 
2023. The graph reveals notable variations over the years, with a sharp peak in 2018 recording the highest total of 10 
deaths. After a slight decline in 2019 and 2020, the incidents stabilized at a moderate level in 2021 before gradually 
increasing again in 2022 and 2023, reaching 7 deaths in the most recent year. This variation indicates that while some 
mitigation measures may have temporarily reduced incidents, the overall conflict remains persistent. The upward trend 

Figure 11: Effectiveness of Electric Fences 

Figure 12: Trends of Human Elephant Conflict incidents Including 
Human deaths and Both Human and Elephant deaths 
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observed in the later years highlights the need for sustained and adaptive management strategies to minimize fatalities 
for both humans and elephants. 

 

 

 

 

 

 

 

 

Figure 13 illustrates the annual trend of elephant-related crop damage incidents across three GN Divisions—
Sembukulama, Ethungama North, and Manakkulama—from 2020 to 2023. The graph shows a clear upward trajectory 
in all locations, indicating a worsening situation over time. Sembukulama and Manakkulama recorded the highest 
levels of crop damage, reaching 160 incidents each in 2023, while Ethungama North experienced a more moderate 
but steady increase, rising from 90 incidents in 2020 to 111 in 2023. These trends reveal that crop-raiding by elephants 
is not only widespread but also escalating, with some areas facing more severe impacts than others. This persistent 
growth in crop damage highlights the urgent need for targeted and location-specific mitigation measures to safeguard 
livelihoods. 

                       
Figure 14: Distribution of recent agricultural expansion across selected GNDs 

Figure 13: Distribution of crop damage frequency due HEC 



 Herath et al. / OIDA International Journal of Sustainable Development, 18:12, 2025 111 

Figure 14 illustrates the distribution of recent agricultural expansion across selected GNDs, based on household 
responses. The variable agri_expansion indicates whether households had recently expanded their cultivation areas, 
with 1 representing "Yes" and 0 representing "No." The data suggest noticeable variation in expansion trends across 
GNDs, potentially reflecting differences in land availability, livelihood pressures, or perceived need to compensate 
for crop losses due to HEC. When considered alongside total_land, households with larger landholdings may be more 
likely to expand cultivation, although this could also increase the spatial interface with elephant habitats. These 
patterns underscore the complex relationship between agricultural practices and HEC risk, highlighting the importance 
of land-use planning in conflict mitigation strategies. 

The focus group discussions (FGDs) also revealed that HEC contributes to significant social stress, with reported 
effects including reduced school attendance due to fear of night raids, increased community tension, and mental health 
issues such as anxiety and depression. Women in particular reported increased burdens related to food insecurity and 
domestic responsibilities. These findings are consistent with studies by Fernando et al. (2012) and Hoare (2015), who 
observed that unresolved HEC often perpetuates cycles of poverty and land insecurity in vulnerable rural communities. 

Additionally, respondents in all three GNDs noted that forest clearance and illegal encroachment have accelerated 
over the past decade, particularly during post-conflict resettlement and land redistribution phases. These 
anthropogenic drivers, combined with weak enforcement mechanisms, continue to undermine conservation efforts, 
leading to further ecological fragmentation. 

By integrating LULC classification, fragmentation metrics, and socio-economic analysis, the study establishes a clear 
linkage between landscape transformation and escalating HEC. The compounded effects of agricultural encroachment, 
habitat degradation, and inadequate conflict mitigation strategies are reshaping the ecological and social fabric of 
Thirappane. This reinforces the urgency of implementing integrated land-use planning approaches that simultaneously 
promote conservation and livelihood resilience. 

The results underscore the importance of spatially-informed decision-making tools, including AI-enhanced remote 
sensing, for monitoring dynamic land changes. Furthermore, they highlight the need for participatory governance 
structures to ensure that conservation strategies are community-sensitive and responsive to local livelihoods. 

Conclusion and Recommendations  

This research has examined Spatio-temporal changes in LULC, forest fragmentation, and their relationship to HEC in 
the Thirappane Divisional Secretariat Division of Sri Lanka, focusing on the GNDs of Sembukulama, Ethungama 
North, and Manakkulama. The integration of traditional Random Forest (RF) classification with a CNN model based 
on the ResNet-50 architecture significantly enhanced the accuracy of LULC mapping across three time points—1995, 
2010, and 2024. The application of this hybrid method improved class separation, particularly between forest and 
agriculture classes, and contributed to a more reliable spatial understanding of landscape transformation over time. 

The findings reveal a clear and consistent trend of forest decline and agricultural expansion, with forest cover 
decreasing by 17.8% and agricultural land increasing by 24.3% over the study period. Built-up areas also saw rapid 
growth, indicating increasing human settlement pressure. These land cover transitions were accompanied by 
measurable changes in forest structure, as evidenced by increased patch and edge density and a decrease in core forest 
area. The ecological fragmentation has not only degraded wildlife habitat but also contributed to the escalation of 
HEC incidents in the region. A statistically significant positive correlation (R = 0.76) was observed between 
agricultural expansion and conflict frequency, affirming that landscape changes are directly influencing the spatial 
behavior of elephants and the severity of human-wildlife interactions. 

The socio-economic implications of these conflicts are substantial. Field survey data showed that 82% of households 
experienced frequent crop damage, while 68% were dissatisfied with existing mitigation measures such as electric 
fencing. These impacts have resulted in notable income loss, disruptions to education, and heightened stress in affected 
rural communities. The study, therefore, highlights the urgent need for integrated, landscape-level planning 
approaches that align rural development objectives with wildlife conservation. Restoration of degraded habitats, 
maintenance of ecological corridors, and strategic buffer zone management should be prioritized to reduce 
fragmentation. Additionally, mitigation strategies must be tailored to local contexts, emphasizing community 
participation, seasonal planning, and livelihood diversification. 

This study demonstrates the value of applying AI-enhanced remote sensing methodologies to ecological and human-
wildlife conflict research. By combining satellite data with community-based field information, the research offers a 
robust and scalable framework for monitoring landscape dynamics and informing policy decisions. Continued 
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investment in such integrative approaches will be essential for promoting biodiversity conservation while safeguarding 
rural livelihoods in Sri Lanka’s conflict-prone dry zone. 
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