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Abstract: The transport sector in 2010 was
responsible for 23% of total CO2 emissions fron fue
combustion in the world. In the same year road
transport was responsible for 72% of total CO2
emissions caused by the transport sector globally.
This high emission level was created transporting
34% of people and goods. Railway moved 9% of
passengers and freight with an impact of just 3% of
total transport CO2 emissions. Worldwide, CO2
emissions per passenger-km went down by 32% in
the period 2000-2010. In the same period, CO2
emissions per freight tonne-km shrunk by 18%. i th
European Union, railways have already largely
exceeded the target of 10% renewables in the energy
mix. In 2010 renewables used in the rail sectorewer
at 18% compared with only 5% in the transport secto
as a whole.

This paper highlights sustainable energy policiex t
spur economic growth and environmental protection
in a global context — particularly in terms of rethg
greenhouse-gas emissions that contribute to climate
change. The target is to mitigate their environmakent
impact through improved energy efficiency and
development and deployment of low-carbon
technologies. The paper considers rail energy and
emissions statistics and presents aggregate dasa on
worldwide rail activity and energy use basis. The
paper looks closely at railway electricity mixes in
Europe as well as options to provide renewable
electricity to railway operators. Moving towards
sustainable mobility requires both integrated and
efficient transport systems as well as secure &ahc
energy. Modal shifts to rail can be a major drifer
decarbonisation of the transport sector, and thefse
data presented illustrates this potential.

Keywords: emissions; energy; environmental
protection; rail; renewables

INTRODUCTION

his paper shows how shifting to rail would

benefit sustainable mobility: worldwide,

railways generate only 3% of transport CO2
emissions, while sustaining more than 9% of total
transport activity. Rail energy efficiency and
emissions are also constantly improving: worldwide
rail energy consumption and CO2 emissions per
passenger-kilometre shrank by more than 30%
between 2000 and 2010 [1]. This is partly due t® th
continued electrification of railways as more than
one-third of energy consumed by railways in the
world is now electricity. The sources of the energy
are also discussed.

In Europe the railway sector has surpassed the EU
directive target set for 2020 which requires that
transport should use 10% of renewable energy. In
fact in 2010 railways used just under 20% of
renewable energy. Despite this success the rail
industry is still very keen to improve and one
example of this is the MERLIN project, (EC Contract
No. FP7-314125), which is part-funded by the
European Commission. MERLIN focuses on energy
management as a key issue for railway systems
though the development of suitable and sustainable
smart energy management solutions. The target for
the project is to contribute to further reduce ralil
energy consumption by 10% and reduce CO2
emissions thereby contributing to a sustainablé rai
system. Similarly OSIRIS (Grant Agreement
Number: SCP1-GA-2011-284868) is a European
project that focuses on a holistic approach to the
reduction of energy consumption for urban rail
systems looking at the system and including vebijcle
infrastructure and operation. The project has
determined key performance indicators and standard
duty cycles to measure energy consumption in urban
rail. Solutions were then proposed and their full
potential investigated by simulations and pilottdes
for the most promising solutions.
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Fig. 1 shows the share of CO2 emissions from doetbustion by sector in 2010. The transport sanot@010 was
responsible for 23% of total CO2 emissions from fi@mbustion in the world. In the same year roatigport was
responsible for 72% of total CO2 emissions causethb transport sector globally. This high emissievel was
created transporting 34% of people and goods. Rgilwoved 9% of passengers and freight with an imphjust
3% of total transport CO2 emissions. Overall, rayw generate less than 1% of the total energyect|&O2
emissions.
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Figure 1 Share of CO2 emissions from fuel combustion byasdnt2010, showing that transport is a significant
polluter but also that rail is the least pollutitgpurce Elaboration by Susdef [2]

ROLE OF POLICY

Fig 1 clearly shows that fuel combustion shouldaliepic of interest for the transport sector anspite the good
performance by the rail sector the rail industrytaggeting clean European Rail Diesel. CleanER&rafit No.
234338) is a European Commission partly-fundedeatofhat aims to develop, improve and integratessioms
reduction technologies for diesel locomotives aaitlrehicles. Furthermore it uses innovative methadd hybrid
solutions for the best possible contribution tougtbns in CO2 emissions. This research was a rsgpof industry
and stakeholders to the introduction of new legjmtasetting tighter GHG emission levels for EurapdRailways.
The so called Stage 11IB legislation follows theagegy established by policy makers in using regdaas a driver
for innovation to reduce emissions in the transpmttor e.g. Euro V (European automotive). A corispar
between road and rail legislation in the EU andt&t§eting CO emissions is shown in figure 2
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WORLD RAIL STATISTICS

Table 1 shows the world transport modal share ih020t shows that road dominates passenger tranggor
measured in passenger km and navigation (shipmlog)inates freight in terms of tonne kilometres. Euwe rail
sector to have an impact in terms of transport emergy efficiency the sensible target is the pagsemarket
dominated by road. A significant modal shift forspangers from road to rail would be a very eneffigient move
and would enhance the sustainability credentialsibf The transport of bulky and heavy goods bipslis already
energy efficient and these should not be targetedadl. However the 10% of freight carried by roadould
certainly be considered as a target for modal gfgiftucing congestion and taking trucks off thedrpzg

Table 1: World transport modal share in 2010 showing thaidance of road in passenger transport and nawigati
(shipping) in freight transport [4]

Passenger Freight Total
PKM TKM TU
ROAD [ | 83.1% 10.0% 33.7%
NAVIGATION 0.3% 79.3% 53.8%
RAIL [ | 6.5% 10.4% 9.2%
AVIATION 10.1% 0.3% 3.3%

Fig. 3 shows the rail passenger transport acthtgeographic area between 1975 and 2010. It lgigtdithat India
and China move more railway passenger-kilometras the rest of the world combined and together #eepunt
for 61% of the total. In Russia and the US passetngéic is not a priority. In contrast Fig. 4 shis that for freight
52% of railway tonne-kilometres are moved in Noktherica and Russia.
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Figure 3: Railway passenger activity from 1975 to 2010 ilion passenger kilometres showing the dominatibn o
rail passengers in India and China and the unpdputa rail as a passenger transport option inUitse
Source UIC (2012)[4]
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Figure 4: Railway freight transport activity from 1975 to ZDih billion train kilometres showing the importanof
rail freight to Russia and North America: Sourd€(2012)[4]
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Interestingly nearly 50% of the world’s railway di& are in North America and the European Union, atieugh
the passenger numbers are high in India and Chagethier they only have 12.5% of the world’s railviiags. This
indicates that the passenger routes have a highfémdor and in turn this means less energy consompnd CO2
emissions per passenger-km. This shows the subiiitinén energy use terms in China and India fait passenger
transport i.e. the figures suggest that efforts lz@eng made to maximize the number of passengerking
electrified railways although the sustainabilitytbé energy mix is not considered in this particalssessment. Also
in Figure 5 it can be seen that the rail sustalitgaliredentials of India and China are enhance@mtaking into
account the efforts being made to electrify thail metwork, India has 30% of its network elecetfiand China has
50%, which is particularly relevant given that £deées ago electrification in China was non-existent
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Figure 5: Share of electrified lines in different geographima@as showing that India and China have an inspres
proportion of their large network electrified andrith America has electrified hardly any of its salngial network:
Source UIC (2012)[4]

RAIL ENERGY M ANAGEMENT AND SUSTAINABILITY RESEARCH: THE URBAN RAIL EXAMPLE

The urban environment is a clear example of raibuaging or aspiring to be the backbone of a sustertransport
chain. A high proportion of the urban movement ebple and goods requires the use of two or morespert
modes and here lays the opportunity for railwaybeéoome the backbone of this chain. A wealth oféaesh has
been conducted on urban mobility and the choicesnake to travel. Railway research is focusing a@hnelogies
and strategies than can enhance the energy efficifithe system and thus enhance sustainability.

A first step in this process is gaining an undemdiiag of how energy is used in the system, anysprart system, but
in particular the railways given their complexifig. 6 shows the specific case of London Undergid®h. Here,
stations consume about 37% of the total energyirsestfor non-traction purposes, while operationsd@pots
account for 12.5% and tunnel ventilation fans fé6. @specially noteworthy is the high energy constimnpof
ground water pumps, about 23% of the non-tractiargy demand.

Depots
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Non-Traction 4.3%

20.0%

Figure 6: Distribution of non-traction energy in London Undgeyund: Source [5]

Fig. 7 shows a typical traction energy flow chat tirban rail, a result of the amalgamation of raeas and
estimated consumption data for different urbansgstems within Europe, [9-17]. This diagram shdblerefore be
considered as illustrative rather than as a reptatee example of the proportion of energy constiimg different
traction subsystems in urban rail, as there isifsigmt variation between different systems. Despite excellent
sustainability credentials of rail the rail secwntinues to improve the energy performance of riiegle by
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considering the research needed to improve thatiitu with respect to energy losses identified ig. F. For
example the infrastructure losses refer to thetrtelmsses occurring from the point of common dgpto the
pantograph (or collector shoes); that is, the detdsses in the substations and the distributietwork, the latter
being significantly higher [18].

As seen in Fig. 7, auxiliary systems consume anoitapt share of the total energy entering the ngllstock.
HVAC equipment is generally responsible for the tsignificant part of this consumption, which igostgly
influenced by the climate conditions [19]. For arste, it has been reported that heating systenosiactor 28% of
the total traction energy in Metro Oslo [14], wheseall auxiliary systems represent about 10% otdled vehicle
consumption in London Underground [15].
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Figure 7: Comparison between measures for energy savingstirexurban rail systems: Source [5]

Another major share of the traction energy is detéid to overcoming the motion resistance of thénmistock.
This comprises both aerodynamic opposition to tbkicle advance and mechanical friction between ishaed
rails. Aerodynamic drag increases with the squéarelcity, therefore its influence is more notibain commuter
trains than in tramways, for instance.

In turn, mechanical resistance plays a more dexisile in low-speed services, the mass of thenghitock being
the main parameter to take into account for reduitseffect. It can be concluded from the ava#diibrature that,
on average, motion resistance is responsible foremately 16% of the traction energy used in arkeil services
[9, 10, 14, 15], as illustrated by Fig. 7.

Energy losses in the traction chain itself mairdpsist of inefficiencies in the converters, theceie motors and the
transmission system. The efficiency of these coraptsmmay significantly vary across the speed amgepoanges,
and so the overall values will depend on the dyttec The greatest portion of traction energy isted in braking
processes, see Fig. 7. The amount of energy disdifia braking strongly depends on the kind of arkeil system,
but generally speaking it accounts for half of #mergy entering the rolling stock. This rate cheémcreases with
the frequency of stops, being higher in tramways metros than in commuter rail, for instance.

Provided that electric motors can act also as geoer while braking, it is possible to recover agdse a significant
proportion of the braking energy [20]. In contragiput one third of the braking energy is irrevdgslost because
of the use of friction brakes and the losses oguyiin motors, convertors and transmission systenngd dynamic
braking.

Once the energy consumption is understood and rdapypie a combination of technologies and strateigid®eing
investigated as the most promising approach tarogdi energy usage. Fig. 8 presents a non-excllistvef the
main initiatives proposed and implemented so famtoimise energy consumption in urban rail. As sdéese
energy efficiency actions are classified into ofiereal and technological measures. Operational oregsaim at
using both existing rolling stock and infrastruetunore efficiently, which can be achieved with misbanges to
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the facilities. In contrast, the introduction ofwnéechnologies requires higher investment costsianpdies major
modifications in the system equipment.
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Figure 8: Strategies to optimise energy in urban rail: Seu5d

Additionally, Fig. 8 tabulates the measures accmydp their level of application; that is, the mo§ stock, the
infrastructure or the whole system. Five clustefsactions have been considered, namely: using ergéue
braking, implementing eco-driving strategies, miisimg traction losses, reducing the energy demdncbmfort
functions, measuring and managing the energy fleffisiently.

As illustrated in Fig. 9, an improved traffic flowontrol helps to apply energy-efficient drivingategies. Besides,
before implementing driving assistance tools, aftarstudy determining the best driving technigaesl optimal
traffic control strategies are needed. In gene@d-driving measures minimise resistive lossesénpower supply
line as they contribute to reduce current flowhe hetwork. They may also lower the thermal loatuimels and
stations because they reduce the intensity of thkilg processes. Interestingly, the use of efficteaffic control
systems may facilitate better interchange of brglénergy between vehicles. Moreover, deceleratiofilgs that
match the characteristics of the traction motottlaad to fewer losses in braking energy recovery.

Synergies must be expected from the combinatiomedisures aimed at reducing energy consumption raforo
functions in vehicles and stations; that is, redgdhe thermal load in tunnels and stations wiltdo the cooling
demand in vehicles, and vice versa. In turn, soreasures like upgrading the HVAC systems of vehi(des. heat
pumps) may increase their mass and, therefordrabton energy consumption.

In addition, actions to increase energy efficienéythe traction system are fully interconnectecetxh other, as
shown in Fig. 9. Thus, reducing traction energystonption through enhanced drives will lead to lessstive
losses in the line. Moreover, improvements in toactequipment will generally imply a mass reductiand any
mass reduction in vehicles will result in reducettion consumptions and fewer losses in the Nieimising the
losses of traction equipment will enhance brakingrgy regeneration and reduce the thermal lodmbih tunnels
and stations.
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RAIL IN THE TRANSPORT CHAIN

Research undertaken by the eco-alliance (Alliana fchiene) in Germany has shown that rail is most
environmentally sustainable for passengers (Fig. dfd freight (Fig. 11) although as mentioned presiy
shipping is an excellent option for long distanaaght.

A B

Figure: 10 showing the environment credentials of passeraieravel, compared to the motor car and flights
(inland) Figure 10A). shows the energy consumption in kWh per passekigp and Figure 10(B) is the CO2
emissions in grams per passenger km. Source: [6]

Germany is an excellent example as it has a highgstion of electrified line (Fig. 5). Countriesatiimport oil and
gas are economically dependent and can be put potigcal pressure. In the EU the transport seatmounts for
over 70% of oil consumption.
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From Fig. 10 (A) and 11(A) it can be seen thattraihsport is much more efficient than rubber tyresashphalt
and this has an effect on energy consumption an? €@fissions. From Fig. 11 (B) rail freight emitsifand a half
times less CO2 than trucks.

A B

04 100

Figure: 11 showing the environmental credentials of raiight compared to shipping and truck Fig.(A)}
shows the energy consumption in kWh per tonne kihFag. 10 (B) is the CO2 emissions in grams pen¢on

km. Source: [6]

Fig. 11 shows that rail and shipping are very éfit as moving goods and freight and it can be sleana freight
and logistics systems based on these modes asajbe ecomponent is the optimum scenario for susbdénfreight.

Germany as one of Europe’s main transit countniefite from the countries high-performance raihsport system
with 70% of long distance container transport td iom the Port of Hamburg being by rail. It isalghat if this
freight went by road then the road network wouldcbmpletely congested and overwhelmed.

Worldwide, metropolitan areas are expanding andngowand regions are merging. The railways are aepeerf
solution because they cover the increasing tramspquirements of urban citizens and help to prevemsport
chaos in metropolitan areas. This is why urban m@as are focusing on rail transport in an incregasiomber of
towns and cities. As can be seen in Fig. 12 tHeags use less space.
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Figure 12: Land use showing that a double track railway Igess land intensive than two direction 3 lane
highway Source [7]

In addition to being the most sustainable form of
transport is also important to point out that tttwg

by train is safer than travelling by car. The risk
being killed in a car accident in Europe is 55 tme
higher than in a train accident [8], and the rigk o
being injured is 105 times higher. The safety rdcor
of railways is another major benefit for societtyisl
also important to note that freight transport by isa
also much safer than by road. Rail is one of the
cleanest and safest transport modes but to achieve
further sustainability levels, understanding of its
performance levels is essential [21].

The railways also save society external transport
costs [8], although the external (hidden) costs of
transport are caused by those using the systeis, it
the tax payer, health insurers and the next geparat
that have to cover these costs. In Europe of the 80
billion euros in external transport costs, road
transport accounts for 77 billion and railways for
only 2.5 billion euros.

CONCLUSIONS

This paper has shown a small glimpse of the patenti
that rail has in order to be the sustainable bac&bo
of an energy efficient transport chain for both
passengers and freight. Moving towards sustainable
mobility requires both integrated and efficient
transport system as well as secure and clean energy
This paper demonstrates that modal shifts to &ail ¢
be a major driver for de-carbonization of the
transport sector. It is important to continue tfpim
policy makers and railway operators to continue to
move towards and a sustainable energy and transport
future.
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